
Correlations of validation metrics
We validated our algorithms against the reference alignments from the

HOMSTRAD database. The graphs offer valuable insights into optimal parameter
combinations for our algorithms to achieve peak performance. Given that both
reference and candidate alignments have the same length, global alignments are
most suitable for validation in our scenario. These graphs can guide parameter
tuning to meet specific needs. When using substitution matrices such as PAM250,
BLOSUM62, and Dayhoff and gap extend costs are set to -1, opting for gap open
costs around -15 proves most advantageous across all validation metrics.

The lowest Avg. Mean Shift Error can be attained by using the global Gotoh
alignment and using the BLOSUM62 and setting the gap-open penalty to -15 and the
gap-extend cost to -2.

Local Gotoh alignments reveal a distinct trend where specificity and
sensitivity diverge.



Further observations include:
● Global Gotoh algorithms deliver the best validation results given our

reference database and the general advantage of the Gotoh algorithm over
the simple nw and sw algorithms.

● Gotoh Local and Gotoh Freeshift alignments generally excel at lower gap
costs, except for BlakeCohen, which is an outlier, performing well even at
higher gap costs.

● Across all alignment types and substitution matrices, there's a consistent
correlation between specificity and sensitivity, as well as between
average mean shift error and average inverse mean shift error (the
exception to this trend is Local Gotoh).

● It's important to note that these examples may not apply to all scenarios, and
each input parameter can significantly impact the alignment quality.



Benchmark: Dynamic vs Recursive
Approach

Before we started implementing our version of the 6 dynamic programming
algorithms, we investigated the difference between the dynamic approach and the
recursive approach to calculating A global alignment score. Our initial expectations
going into our investigation were that the dynamic algorithms would greatly
outperform the recursive approach at higher sequence lengths. We constructed two
basic implementations of the two algorithms with constant values for a match score,
gap cost, and a non match score. The data we collected from our tests further
reinforced our initial expectations.

Figure 1.1 Dynamic program computation time (left) and recursive program computation time (right): both graphs were
made using the same set of 10,000 randomly generated strings of n-lenght (x-axis) and were measured on average

computation time in nanoseconds (y-axis)dz

In both graphs, a relatively similar shape arises, with the recursive program
having a much higher rate of growth in comparison to the dynamic graph. By a string
length of 8 the recursive function had an average computation time of 4.57x106

nanosecond while the dynamic algorithm was averaging 2337 nanoseconds. This
inefficacy in the recursive function can be mainly attributed to inability to store values
of previously calculated scores, having to recalculate the value for the same
combination of two prefixes multiple times. This drawback is resolved in the dynamic
approach with the addition of the dynamic matrix, allowing the program to



systematically calculate an alignment score of two sequences using previously
calculated prefixes. The dynamic matrix in the dynamic method allows it to reach a
computation time of O(n2), majorly surpassing the recursive method's O(3n). While
this is the recursive function's main flaw, it can be rectified with something like a hash
map, allowing for the computation time to near O(n2) by longer sequences. A
shortcoming that can't be solved however, is a recursive function's intrinsic limitation
in stack space. By particularly long sequences, the recursive function will have a
stack overflow error before reaching the base case for the first time.


